
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 2, JUNE 2020 627

Consensus of Multiagent Systems Via
Asynchronous Cloud Communication
Sean L. Bowman , Student Member, IEEE, Cameron Nowzari , Member, IEEE,

and George J. Pappas , Fellow, IEEE

Abstract—In this paper, we study a multiagent consensus
problem in which agents are only able to communicate with
each other intermittently through a cloud server. To reduce
the amount of required communication, we develop a self-
triggered algorithm that allows agents to communicate with
the cloud only when necessary rather than at a fixed period.
Unlike the vast majority of similar works that propose dis-
tributed event- and/or self-triggered control laws, this paper
does not assume agents can be “listening” continuously.
In other words, when an event is triggered by one agent,
neighboring agents will not be aware of this until the next
time they establish communication with the cloud them-
selves. Using a notion of “promises” about future control
inputs, agents are able to keep track of higher quality esti-
mates about their neighbors allowing them to stay discon-
nected from the cloud for longer periods of time while still
guaranteeing a positive contribution to the global task. We
prove that our self-triggered coordination algorithm guar-
antees that the system asymptotically reaches the set of
desired states. Simulations illustrate our results.

Index Terms—Algorithm design and analysis, conver-
gence, Lyapunov methods, multi-agent systems, multi-
robot systems.

I. INTRODUCTION

THIS PAPER considers a multiagent consensus problem
where agents can only communicate with one another in-

directly through the use of a central base station or “cloud.”
Small connected household devices that require communica-
tion and coordination with each other are becoming increas-
ingly prevalent (the “Internet of Things”). To reduce both power
consumption and bandwidth requirements for these small, low-
power devices, it is ideal that they communicate as infrequently
as possible with the cloud server. For instance, one can imagine
a number of devices trying to coordinate through asynchronous

Manuscript received March 26, 2019; revised July 15, 2019; accepted
July 20, 2019. Date of publication August 15, 2019; date of current ver-
sion June 12, 2020. Recommended by Associate Editor S. L. Smith.
(Corresponding author: Sean L. Bowman.)

S. L. Bowman is with the Computer and Information Science Depart-
ment, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:,
seanbow@seas.upenn.edu).

C. Nowzari is with the Electrical and Computer Engineering De-
partment, George Mason University, Fairfax, VA 22030 USA (e-mail:,
cnowzari@gmu.edu).

G. J. Pappas is with the Electrical and Systems Engineering Depart-
ment, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:,
pappasg@seas.upenn.edu).

Digital Object Identifier 10.1109/TCNS.2019.2935626

communication with a dedicated cloud (e.g., email) server. In
this setting, a device can only receive and send messages while
connected to the server; however, being connected to the server
at all times is a waste of energy and wireless resources. In
this paper, we present a method to facilitate the coordination
of a number of agents through a cloud server that guarantees
the completion of a global task while reducing the number of
communications required and without the need for a device to
continuously be in communication with the cloud server.

Specifically, we consider the concrete problem of driving a set
of agents to consensus. Consensus is a multiagent coordination
problem that is, despite its simplicity, applicable to numerous
networking areas; for example, formation control, distributed
estimation, and clock synchronization can all be directly or indi-
rectly solved by applications of consensus algorithms [1]. Many
groups of researchers have looked at this problem; however, the
vast majority of related works allow for an agent to broadcast to
its neighbors at any desired time [1], which requires each agent
to be “listening” at all times. The proliferation of small devices
with strict power consumption requirements that are unable to
constantly have their radios turned ON renders these approaches
inadequate. Instead, we seek a lower power solution that only
requires communication at a limited discrete set of times.

Each time an agent communicates with the base server, it
must determine the next communication time as well as the
control law to use while disconnected in order to achieve some
desired global task based only on information available on the
server at that moment. In this paper, we are interested in design-
ing a self-triggered coordination algorithm in which agents can
autonomously schedule the next time to communicate with the
cloud based on currently available information.

Literature review: In the context of the multiagent coordina-
tion problem in general, the literature is extensive [2], [3]. In
our specific problem of multiagent consensus, Olfati-Saber and
Murray [4] introduce a continuous-time law that guarantees con-
sensus convergence on undirected as well as weight-balanced
digraphs. However, the majority of these works assume agents
can continuously, or at least periodically, obtain information
about their neighbors. Instead, when communication is expen-
sive, as in our case, we wish to minimize the number of times
communication is necessary.

A useful tool for determining communication times in this
manner is event-triggered control, where an algorithm is de-
signed to tune controller executions to the state evolution of a
given system, see, e.g., [5] and [6]. In particular, event-triggered

2325-5870 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 10,2020 at 17:11:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7711-2321
https://orcid.org/0000-0001-7287-9972
https://orcid.org/0000-0001-9081-0637
mailto:seanbow@seas.upenn.edu
mailto:cnowzari@gmu.edu
mailto:pappasg@seas.upenn.edu

628 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 2, JUNE 2020

control has been successfully applied to multiagent systems
with the goal of limiting computation and decision making to
reduce overall communication, sensing, and/or actuation effort
of the agents. In [7], the authors formulate a threshold on sys-
tem error to determine when control signals need to be updated.
In [8], the authors expand on this and determine a distributed
threshold for a wireless control network, taking into account
network errors such as communication delays and packet drops.
Event-triggered ideas have also been applied to the acquisition
of information. Several approaches [9]–[11] utilize periodically
sampled data to re-evaluate the controller trigger. Zhong and
Cassandras [12] additionally drop the need for periodic sam-
pling, creating a distributed trigger to decide when to share data
based only on local information.

Event-triggered approaches generally require the persistent
monitoring of some triggering function as new information is
being obtained. Unfortunately, this is not directly applicable to
our setup because the agents only get new information when
they communicate with the base station. Instead, self-triggered
control [13]–[15] removes the need to continuously monitor the
triggering function, instead requiring each agent to compute its
next trigger time based solely on the information available at
the previously triggered sample time.

The first to apply these ideas to consensus, Dimarogonas
et al. [16], remove the need for continuous control by introduc-
ing an event-triggered rule to determine when an agent should
update its control signal, however, still requiring continuous
information about their neighbors. In [17], the authors further
remove the need for continuous neighbor state information, cre-
ating a time-dependent triggering function to determine when
to broadcast information. The algorithm presented in [18] sim-
ilarly broadcasts information based on a state-dependent trig-
gering function. Recently, these ideas have been extended from
undirected graphs to arbitrary directed ones [11], [19].

A major drawback of all aforementioned works is that they
require all agents to be “listening,” or available to receive in-
formation, at all times. Specifically, when an agent decides to
broadcast information to its neighbors, it is assumed that all
neighbors in the communication graph are able to instanta-
neously receive that information. Instead, we are interested in a
situation where when an agent is disconnected from the cloud
it is incapable of communicating with other agents.

The authors in [20] consider the problem of multiagent cov-
erage control and develop a cloud-supported, event-triggered
algorithm to assign coverage regions. In [21], the authors study
a similar problem to the one we consider here but in the con-
text of coordination of autonomous underwater vehicles (AUVs)
that are unable to communicate while submerged. The authors
develop an event-triggered solution in which all AUVs must
surface together at the same time. Instead, we are interested in a
strategy in which devices can autonomously communicate asyn-
chronously while still guaranteeing a desired stability property.
This problem has recently been looked at in [22]–[25], where
the authors utilize event- and self-triggered coordination strate-
gies to determine when the AUVs should resurface. In [22], a
time-dependent triggering rule is developed that ensures practi-
cal convergence (in the presence of noise) of the whole system

to the desired configuration. In [24], the authors present a simi-
larly time-dependent triggering rule that allows agents to track
a reference trajectory in the presence of noise, and in [25], they
generalize this to second-order systems. Instead, the authors
in [23] develop a state-dependent triggering rule with no explicit
dependence on time; however, the self-triggered algorithm de-
veloped there is not guaranteed to avoid Zeno behaviors, which
makes it an incomplete solution. In this paper, we incorporate
ideas of promises from team-triggered control [26] to develop a
state-dependent triggering rule that guarantees asymptotic con-
vergence to consensus while ensuring that Zeno behavior is
avoided.

Statement of contributions: Our main contribution is the de-
velopment of a novel distributed team-triggered algorithm that
combines ideas from self-triggered control with a notion of
“promises.” These promises allow agents to make better de-
cisions since they have higher quality information about their
neighbors in general. Our algorithm incorporates these promises
into the state-dependent trigger to determine when they should
communicate with the cloud. In contrast to [22] and [23], our
algorithm uses a state-dependent triggering rule with no explicit
dependence on time, no global parameters, and no possibility of
Zeno behavior. The main drawback of the time-dependent trig-
gering rule is the dependence on parameters σ0 , σ1 , λ0 , which
greatly affect the performance (number of events and conver-
gence speed) of the system and there is no good way to choose
these a priori; i.e., depending on the initial condition, differ-
ent values of σ0 , σ1 , λ0 will perform better. Instead, the state-
dependent triggering rule developed here is more naturally cou-
pled with the current state of the system. In general, distributed
event- and self-triggered algorithms are designed so that agents
are never contributing negatively to the global task, generally
defined by the evolution of a Lyapunov function V . Instead,
our algorithm does not rely on this guarantee. More specifically,
we actually allow an agent to be contributing negatively to the
global task temporarily, as long as it is accounted for by its
net contribution over time. Our algorithm guarantees the sys-
tem converges asymptotically to consensus while ensuring that
Zeno executions cannot occur. Finally, we illustrate our results
through simulations.

An earlier version of this paper appeared in [27]. In contrast
to [27], the algorithm presented here much more effectively
uses all available information from the cloud. Second, it is both
motivated more rigorously as an optimization problem and fully
proven correct. Finally, our simulations are greatly expanded and
show that the algorithm presented here compares very favorably
to that in [27].

II. PROBLEM STATEMENT

We consider a system of N agents with single-integrator
dynamics

ẋi(t) = ui(t) (1)

for all i ∈ {1, . . . , N}, where we are interested in reaching a
consensus configuration, i.e., where ‖xi(t) − xj (t)‖ → 0 as
t → ∞ for all i, j ∈ {1, . . . , N}. For simplicity, we consider

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 10,2020 at 17:11:35 UTC from IEEE Xplore. Restrictions apply.

BOWMAN et al.: CONSENSUS OF MULTIAGENT SYSTEMS VIA ASYNCHRONOUS CLOUD COMMUNICATION 629

scalar states xi ∈ R, but these ideas are extendable to arbitrary
dimensions.

Given a connected communication graph G, it is well
known [4] that the distributed continuous control law

ui(t) = −
∑

j∈Ni

(xi(t) − xj (t)) (2)

drives each agent of the system to asymptotically converge to the
average of the agents’ initial conditions. However, in order to be
implementable, this control law requires each agent to contin-
uously have information about its neighbors and continuously
update its control law.

Several recent works have been aimed at relaxing these re-
quirements [11], [17], [19], [28]. However, they all require
agents to be “listening” continuously to their neighbors, i.e.,
when an event is triggered by one agent, its neighbors are im-
mediately aware and can take action accordingly.

Unfortunately, as we assume here that agents are unable to
perform any communication except at a discrete set of com-
munication times, we cannot continuously detect neighboring
events that occur. Instead, we assume that agents are only able
to update their control signals when their own events are trig-
gered (i.e., when they communicate with the base server). Let
{t�i}�∈Z≥0 be the sequence of times at which agent i commu-
nicates. Then, our algorithm is based on a piecewise constant
implementation of the controller (2) given by

u�
i (t) = −

∑

j∈Ni

(xi(t�i) − xj (t�i)), t ∈ [t�i , t
�+1
i). (3)

Remark II.1: Later we will allow the control input ui(t) to
change in a limited way on [t�i , t

�+1
i), but for now we assume that

it is piecewise constant on the intervals [t�i , t
�+1
i). Motivation for

and details behind changing the control while disconnected are
discussed later in Section III-C. •

The purpose of this paper is to develop a self-triggered al-
gorithm that determines how the sequence of times {t�i} and
control inputs ui(t) can be chosen such that the system con-
verges to the desired consensus state. More specifically, each
agent i at each communication time t�i must determine the next
time t�+1

i and control ui(t) only using information available on
the cloud at that instant. The closed-loop system should then
have trajectories such that |xi(t) − xj (t)| → 0 as t → ∞ for all
i, j ∈ {1, . . . , N}. We describe the cloud communication model
next.

A. Cloud Communication Model

We assume that there exists a base station or “cloud” that
agents are able to upload data to and download data from. This
cloud can store any finite amount of data but can perform no
computation. This assumption allows the computational load
to be shared or off-loaded onto individual agents as necessary,
allowing the system to share and take advantage of the available
computational resources. This also results in a more scalable
system limited only by the cloud’s available memory, allow-
ing the network to take advantage of computational resources
introduced by any additional agents.

TABLE I
DATA STORED ON THE CLOUD FOR ALL AGENTS i AT ANY TIME t

At any given time t ∈ [t�i , t
�+1
i), the cloud stores the following

information about agent i: the last time tlast
i (t) = t�i that agent

i communicated, the next time tnext
i (t) = t�+1

i that agent i is
scheduled to communicate, the state xi(tlast

i) of agent i when
it last communicated, and the last control signal ui(tlast

i) used
by agent i. The server also contains a control expiration time
texpire
i ≤ tnext

i and a promise Mi for each agent i, which will be
explained later in Section III. This information is summarized
in Table I.

For simplicity, we assume that agents can download/upload
information to/from the cloud instantaneously. Let t�i be a time at
which agent i communicates with the cloud. The communication
link is established at time t�i , and we immediately update tlast

i =
t�i and xi(t�i) based on agent is current position.

While the link is open, agent i downloads all the information
in Table I for each neighbor j ∈ Ni . Using this information,
agent i (instantaneously) computes its control signal ui(t�i) and
next communication time t�+1

i such that it knows it will make
a net positive contribution to the consensus objective over the
interval [t�i , t

�+1
i). Finally, before closing the communication

link, agent i calculates a promise Mi bounding its future control
inputs and uploads all data to the server.

Remark II.2: Because of the existence of a centralized cloud
server, it may be tempting to ask why the communication graph
G is not always the complete graph KN. Note that the amount
of computation an agent does under our algorithm is quadratic
in the number of neighbors |Ni | (see Remark III.3). To ensure
scalability for agents with limited computational capabilities
as the number of agents in the network grows large, it may be
necessary to force a more limited communication topology. Fur-
thermore, especially with the increasing popularity of software
defined networking, it is true that while any agent i may be able
to communicate with any other agent j, it should be avoided
whenever possible. •

Remark II.3: It may also be tempting to consider a cloud
that is instead allowed to perform some computation and sim-
ply instructs each agent to travel to the computed centroid of
all agents’ positions. While this would save both computation
and communication in situations where applicable, it loses the
benefits of our distributed computation as outlined earlier in
this section and in Remark III.3. Furthermore, our distributed
consensus scheme allows for dynamically adding or removing
agents to or from the system, is more robust to control and/or
estimation disturbances, and is more easily extensible to other
multiagent coordination problems, e.g., formation control. •

Problem 1: Given N agents with dynamics (1) and the com-
munication model described in Section II-A, for each agent i,
find an algorithm that prescribes when to communicate with the

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 10,2020 at 17:11:35 UTC from IEEE Xplore. Restrictions apply.

630 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 2, JUNE 2020

cloud based on currently available information and a control in-
put ui(t) used in between communications t ∈ [t�i , t

�+1
i), such

that

|xj (t) − xi(t)| → 0 (4)

as t → ∞ for all agents i, j ∈ {1, . . . , N}.

III. DISTRIBUTED TRIGGER DESIGN

Consider the objective function

V (x(t)) =
1
2
xT (t)Lx(t) (5)

where L is the Laplacian of the connected communication
graph G. Note that V (x) ≥ 0 for all x ∈ RN and V (x) = 0 if
and only if xi = xj for all i, j ∈ {1, . . . , N}. Thus, the function
V (x) encodes the objective of the problem and we are inter-
ested in driving V (x) → 0. For simplicity, we drop the explicit
dependence on time when referring to time t.

Taking the derivative of V with respect to time, we have

V̇ = ẋT Lx = −
N∑

i=1

ẋi

∑

j∈Ni

(xj − xi). (6)

Let us split up V̇ =
∑N

i=1 V̇i , where

V̇i � −ẋi

∑

j∈Ni

(xj − xi). (7)

Note that we have essentially distributed V̇ in a way that clearly
shows how each agent’s motion directly contributes to the global
objective, allowing us to write

V (x(t)) = V (x(0)) +
N∑

i=1

∫ t

0
V̇i(x(τ))dτ. (8)

Remark III.1: The algorithm presented here is generalizable
to other multiagent system architectures, e.g., higher-dimension
states or directed graphs, through the use of other objective
functions.

To ensure that each agent is positively contributing to the
objective at all times, we now wish to design a self-triggered
algorithm such that V̇i(x(t)) ≤ 0 for all agents i at all times t.
Thus, at time t�i , agent i must determine t�+1

i and ui(t) such that
V̇i(t) ≤ 0 for all t ∈ [t�i , t

�+1
i).

While in the fully developed algorithm we will allow an agent
to modify its control while disconnected, for now we assume that
the control input is constant on the entire disconnected interval
and defer the discussion of the control “expiration time” texpire

i ,
its motivation, and (minor) modifications to the algorithm to
Section III-C.

Note that given the information agent i downloaded from the
server at time t�i , it is able to exactly compute the state of a
neighboring agent j ∈ Ni up to the time the neighbor j next
communicates, tnext

j . For any t ∈ [t�i , t
next
j]

xj (t) = xj

(
tlast
j

)
+ uj

(
tlast
j

) (
t − tlast

j

)
. (9)

At time tnext
j , however, agent j autonomously updates its con-

trol signal in a way unknown to agent i, making it difficult to

determine how agent i should move without communicating
with the cloud. To remedy this, we borrow an idea of promises
from team-triggered control [26]. Suppose that although we do
not know ẋj (t) exactly for t > Ti , we have access to some
bound Mj (t) > 0 such that |ẋj (t)| ≤ Mj (t).

Using this information, we introduce the notion of agent js
reachable set as determinable by agent i. For any j ∈ Ni , let
Ri

j (t) be the set of states at time t within which agent i can
determine that agent j must be in. For t ≤ tnext

j , agent i is able to
determine xj (t) exactly and so Ri

j (t) = {xj (t)} is a singleton
containing agent js exact position. For t > tnext

j , as all agent i

knows is a bound on agent js control law, Ri
j is a ball that grows

at a rate determined by agent js promise Mj as

Ri
j (t) =

{
{xj (tlast

j) + uj (tlast
j)(t − tlast

j)} t ≤ tnext
j

B(xj (tnext
j),Mj (t)(t − tnext

j)) otherwise
(10)

where B(x, r) is a closed ball of radius r centered at x.
We can now express the latest time that agent i can still be

sure, it is contributing positively to the objective.
Definition 1: T�

i is the first time T�
i ≥ t�i after which agent

i can no longer guarantee it is positively contributing to the
objective, the solution to the following:

infimum
t≥t�

i

t

subject to max
x(t)∈Ri (t)

V̇i(x(t)) > 0
(11)

where Ri(t) is defined as the set of all states xj (t) for j ∈
Ni ∪ {i} such that each xj (t) satisfies xj (t) ∈ Ri

j (t).
It is easy to compute the solution to (11) exactly given the

structure of Ri
j (t) given above. Let πt be a sorted ordering

on the next communication times of all of agent is neighbors,
i.e., let πt : [|Ni |] → Ni be a one-to-one function such that
tnext
πt (1) ≤ tnext

πt (2) ≤ · · · ≤ tnext
πt (|Ni |) . We abuse notation slightly by

additionally setting tnext
π (0) = tlast

i and tnext
π (|Ni |+1) = ∞ so the union

of the intervals [tnext
π (k) , t

next
π (k+1)) for k ∈ {0, 1, . . . , |Ni |} covers

all t ≥ tlast
i .

Proposition 1: Let τ
�,(k)
i be the solution to the following

optimization:

infimum
t

t

subject to tnext
π (k) ≤ t ≤ tnext

π (k+1)

k∑

m ′=1

αiπ (m ′)

(
tnext
π (m ′)

)
+

|Ni |∑

m=k+1

αiπ (m)
(
tlast
i

)

+
k∑

m ′=1

(
t − tnext

π (m)

)
γiπ (m ′)

(
tlast
i

)

+
|Ni |∑

m=k+1

(
t − tnext

π (m)

)
βiπ (m)

(
tlast
i

)
> 0

(12)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 10,2020 at 17:11:35 UTC from IEEE Xplore. Restrictions apply.

BOWMAN et al.: CONSENSUS OF MULTIAGENT SYSTEMS VIA ASYNCHRONOUS CLOUD COMMUNICATION 631

where

αij (t) � −ui(t)(xj (t) − xi(t)) (13)

βij (t) � −ui(t)(uj (t) − ui(t)) (14)

γij (t) � |ui(t)|Mj (t) + ui(t)2 . (15)

Then, the solution T�
i to (11) can be computed exactly as

T�
i = min {τ�,(k)

i | k ∈ {0, . . . , |Ni |}}. (16)

Proof: See Appendix A. �
It is additionally possible to allow agent i to remain discon-

nected for longer by allowing V̇i to temporarily become positive,
as long as we select t�+1

i such that the total contribution to the
objective V on the interval [t�i , t

�+1
i)

ΔV �
i �

∫ t� + 1
i

t�
i

V̇i(τ)dτ (17)

is nonpositive.
Definition 2: T total

i is the first time T total
i ≥ t�i after which

agent i can no longer guarantee its total contribution over the
submerged interval is positive, the solution to the following:

infimum
t≥t�

i

t

subject to max
x(t)∈Ri (t)

∫ t

t last
i

V̇i(τ)dτ > 0.
(18)

To compute T total
i , we follow a similar approach.

Proposition 2: Let τ
tot,(k)
i be the solution to the following

optimization:

infimum
t

t

subject to tnext
π (k) ≤ t ≤ tnext

π (k+1)

k∑

m ′=1

[
αiπ (m ′)

(
tlast
i

) (
tnext
π (m ′) − tlast

i

)

+
1
2
βiπ (m ′)

(
tlast
i

) (
tnext
π (m ′) − tlast

i

)2

+ αiπ (m ′)

(
tnext
π (m ′)

)(
t − tnext

π (m ′)

)

+
1
2
γiπ (m ′)

(
tlast
i

) (
t − tnext

π (m ′)

)2]

+
|Ni |∑

m=k+1

[
αiπ (m)

(
tlast
i

) (
t − tlast

i

)

+
1
2
βiπ (m)

(
tlast
i

) (
t − tlast

i

)2
]

> 0. (19)

Then, the solution T total
i to (18) can be computed as

T total
i = min {τ tot,(k)

i | k ∈ {0, . . . , |Ni |}}. (20)

Proof: See Appendix B. �
Remark III.2: Although the constraints in Propositions 1

and 2 appear complex, note that they are linear or quadratic
in t and so the infimums can be solved for easily. Consider a

problem of the form

infimum
t

t

subject to g(t) > 0

t1 ≤ t ≤ t2 (21)

where g(t) is a polynomial in t.
Let r1 ≤ r2 ≤ · · · ≤ rK be the roots of g that lie in the in-

terval (t1 , t2), and let r0 = t1 and rK +1 = t2 . The solution t�

to (21) is the smallest ri , i = 0, . . . , K, such that g(ri) ≥ 0 and
g(1

2 (ri + ri+1)) > 0. If no such ri exists, t� = ∞. •
Remark III.3: The computation of the constraint coefficients

in (19) and (12) takes O(|Ni |) time, solving the optimization
given the constraint coefficients takes O(1) time, and in both
cases |Ni | + 1 such problems must be solved. Thus, computa-
tion of T� and T total both takes O(|Ni |2) time. Note that |Ni | for
some agent i does not necessarily increase proportionally with
N ; a random connected graph G with N vertices can have just
|Ni | ∝ log N neighbors, resulting in an agent’s computation
taking O(log N) time, which is sublinear in N . •

Selecting t�+1 = T�
i ensures that V̇i < 0 over the discon-

nected interval, ensuring that agent i is making progress toward
the global objective at all t. Selecting t�+1 = T total

i introduces a
tradeoff; while this time allows the agent to disable its radio for
longer, as it allows some positive contribution to the objective
function, overall progress toward consensus is slower. Thus, we
propose a tuning parameter σi ∈ [0, 1], selecting a time t�+1

i

such that T�
i ≤ t�+1 ≤ T total

i

t�+1
i = (1 − σi)T�

i + σiT
total
i . (22)

By continuity of V̇i and the definitions of T�
i and T total

i , it is
guaranteed for t�+1

i ∈ [T�
i , T total

i] that we still have ΔV �
i ≤ 0 [as

defined in (17)]. Setting all σi near 0 allows faster convergence
with more frequent communication, while σi near 1 results in
slower convergence but less frequent communication.

A. Selecting Promises Mj

As it is not possible in general for agent i to bound a neigh-
bor agent js future control inputs from past state and control
information, instead each agent makes a promise Mi about its
future control inputs each time it connects to the server. In the
preceding section, we assumed that the bound |ẋj (t)| ≤ Mj (t)
was satisfied at all times without describing how to make it so.
Here, we describe how to codesign the control laws ui(t) and
promises Mi(t) to ensure that this actually holds at all times.

Let M�
i be the promise made by agent i at time t�i . From the

constraints in Propositions 1 and 2, it is clear that the smaller
Mj is for any j ∈ Ni , the longer agent i is able to remain
disconnected. However, limiting the control too much below
the ideal control (3) will slow convergence.

We consider a promise rule in which at time t�i agent i sets its
promise to be a function of |u�

i (t
�
i)| as

M�
i = f

(∣∣u�
i (t

�
i)

∣∣) . (23)

For example, f(x) = cx provides a parameter c that effectively
allows another tradeoff between convergence speed and com-
munication frequency. Note, however, that this does not mean

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 10,2020 at 17:11:35 UTC from IEEE Xplore. Restrictions apply.

632 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 2, JUNE 2020

agent i can use its ideal control law at all times; if the new de-
sired input is greater in magnitude than a previous promise, to
remain truthful to previous promises agent i must wait until all
of its neighbors download the new promise before it can use its
desired control input.

Let τ �
ij be the time that agent j sees agent is �th promise,

i.e., τ �
ij = tnext

j (t�i). On the interval [t�i , t
�+1
i), agent i needs to

guarantee that all promises Mi currently believed by j ∈ Ni are
abided by.

Let plast
ij (t) be the index of the most recent promise by agent

i that agent j is aware of at time t, i.e.,

plast
ij (t) = arg max

� : τ �
i j ≤t

τ �
ij (24)

and let P�
i be the set of promise indices that agent i must abide

by when submerging on [t�i , t
�+1
i), i.e.,

P�
i =

{
plast

ij (t) | j ∈ Ni , t ∈ [t�i , t
�+1
i)

}
. (25)

To abide by all promises that agent is neighbors believe about
its controls, then, it simply needs to bound its control input
magnitude by

umax
i (t�i) = min

k∈P�
i

Mk
i . (26)

With this bound, the actual control law used and uploaded by
agent i on the interval [t�i , t

�+1
i) is given by bounding the ideal

control magnitude by umax
i (t�i), or

ui(t�i) =

⎧
⎨

⎩

u�
i (t

�
i)

∣∣u�
i (t

�
i)

∣∣ ≤ umax
i (t�i)

umax
i (t�i)

u�
i (t�

i)

|u�
i (t�

i)| otherwise.
(27)

B. Maximum Submerged Time

The method presented, thus, far is almost complete; however,
consider the case in which a subset of the communication graph
has locally reached “consensus” while the system as a whole
has not. If there is some agent i such that at agent is next
communication time t�i we have xi(t�i) = xj (t�i) for all j ∈ Ni ,
and furthermore that uj (t�i) = 0 for all j ∈ Ni , then it would
set its next triggering time to infinity. An examination of the
constraints in (12) and (19) then reveals that the feasible set in
both cases is equal to the empty set ∅. The times T�

i and T total
i

will, thus, be chosen as inf ∅ = ∞.
To guarantee consensus in all situations, and as it is impossi-

ble for agent i to obtain information outside of its neighbors, it is
necessary to introduce a maximum disconnected time tmax. If an
agent i computes a tideal

i such that tideal
i − tlast

i > tmax, the agent
instead chooses tnext

i = tlast
i + tmax. This ensures that despite a

region of the communication network being at local “consen-
sus,” no agent will effectively remove itself from the system
and information will continue to propagate. While a large tmax
could result in delayed consensus if part of the communication
graph is at a local consensus, a too small tmax will result in un-
necessary communication taking place; in simulation the local
consensus situation is very rare and tmax played a small role in
the communication time selection.

C. Avoiding Zeno Behavior

While the presented method of selecting times and control in-
puts guarantees convergence, it is susceptible to Zeno behavior,
i.e., requiring some agent i to communicate an infinite number
of times in a finite time period. To avoid this behavior, we in-
troduce a fixed dwell time T dwell

i > 0, and force each agent to
remain disconnected for at least a duration of T dwell

i . Unfortu-
nately, this means that in general, there may be times at which
an agent i is forced to remain disconnected even when it does
not know how to move to contribute positively to the global
task (or it may not even be possible if it is at a local minimum).
Remarkably, from the way we have distributed V̇ using (7),
if agent i sets ui(t) = 0, its instantaneous contribution to the
global objective is exactly 0.

Thus, we allow an agent’s control to change while it is dis-
connected and modify the control law described in the pre-
vious section as follows. If the chosen ideal communication
time tideal

i = (1 − σi)T�
i + σiT

total
i is greater than or equal to

t�i + T dwell
i , then nothing changes; agent i sets its next commu-

nication time t�+1
i = tideal

i and uses the control law (27) on the
entire disconnected interval.

If, on the other hand, tideal
i < t�i + T dwell

i , we let agent i use the
usual control law until tideal

i , until which it knows it can make a
positive contribution. After tideal

i , we force agent i to remain still
until it has been disconnected for a duration equal to the dwell
time. In other words, we set tnext = t�i + T dwell

i , texpire = tideal
i

and use control law (27) on the interval [t�i , t
expire
i).

For t ∈ [texpire
i , t�+1

i), we then set ui(t) = 0, and note that
because V̇i(t) = 0 on this interval, we still have the desired
contribution to the global objective

∫ t� + 1
i

t�
i

V̇i(τ)dτ =
∫ texpire

i

t�
i

V̇i(τ)dτ < 0. (28)

Agent i is then still able to calculate the position of any
neighbor j exactly for any t < tnext

j using information available
on the cloud by

xj (t) =

{
xj (tlast

j) + uj (tlast
j)(t − tlast

j) t < texpire
j

xj (tlast
j) + uj (tlast

j)(texpire
j − tlast

j) otherwise.

(29)

An overview of the fully synthesized self-triggered coordina-
tion algorithm is presented in Algorithm 1. Next, we present the
main convergence result of this algorithm.

Theorem III.4: Given the dynamics (1) and G connected, if
the sequence of times {t�i} and control laws ui(t�i) are deter-
mined by Algorithm 1 for all i ∈ {1, . . . , N}, then

|xi(t) − xj (t)| → 0 (30)

for all i, j ∈ {1, . . . , N} as t → ∞.
Proof: First, because t�+1 − t� ≥ T dwell

i > 0, Zeno behav-
ior is impossible, and so x(t) exists for all t ≥ 0.

Consider ΔV �
i [as defined in (17)], which is the net con-

tribution of agent i over the time interval [t�i , t
�+1
i). From the

definition of T�
i and T total

i , and the continuity of V̇ , it is clear
that we have T ∗

i ≤ tideal
i ≤ T total

i . From the definition of T total

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 10,2020 at 17:11:35 UTC from IEEE Xplore. Restrictions apply.

BOWMAN et al.: CONSENSUS OF MULTIAGENT SYSTEMS VIA ASYNCHRONOUS CLOUD COMMUNICATION 633

Fig. 1. Plots of (a) the time to convergence, and (b) number of communications required for convergence for our algorithm with σ = 0.5 and
promise function f (x) = x (solid blue), the algorithm presented in [27] with σ = 0.5 (dashed red), and for a periodic triggering rule with period
T = 0.01 (dot-dash yellow). The algorithm presented here results in a similar convergence time as a periodic triggering rule, however, with far fewer
communications required.

Algorithm 1: III-C.

At t = 0, initialize ui = 0, t0i arbitrary small number.
At communication time t�i , agent i ∈ {1, . . . , N} performs:

1: download tlast
j , texpire

j , tnext
j , xj (tlast

j), ui(tlast
j),Mj for all

j ∈ Ni from cloud
2: compute neighbor positions xj (t�i) using (29)
3: compute ideal control u�

i (t
�
i) = −∑

j∈Ni
(xi(t�i) − xj (t�i))

4: compute umax
i (t�i) using (26) and saved τij data

5: compute control ui(t�i) with (27)
6: compute T�

i as the solution to (11)
7: compute T total as the solution to (18)
8: set tideal

i = (1 − σi)T�
i + σiT

total
i

9: if tideal
i > t�i + tmax then

10: set texpire
i = t�+1

i = t�i + tmax

11: else if tideal
i < t�i + T dwell

i then
12: set texpire

i = tideal
i

13: set t�+1
i = t�i + T dwell

i

14: else
15: set texpire

i = t�+1
i = tideal

i

16: end if
17: upload promise Mi =

∣∣u�
i (t

�
i)

∣∣ to cloud
18: upload tlast

i = t�i , tnext
i = t�+1

i , texpire
i , ui(t�i), xi(t�i) to

cloud
19: disconnect and set ui(t) = ui(t�i) for t ∈ [t�i , t

expire
i),

ui(t) = 0 for t ∈ [texpire
i , t�+1

i)

and Proposition 2, we have that

∫ T total
i

t�

V̇i(τ)dτ ≤ 0 (31)

and furthermore that

∫ t

t�

V̇i(τ)dτ ≤ 0 (32)

Fig. 2. Simulated communication network.

for any t ∈ [t�i , T
total
i), and in particular for tideal

i . Thus, we have

ΔV �
i =

∫ t ideal
i

t�
i

V̇ (τ)dτ

︸ ︷︷ ︸
≤0

+
∫ t� + 1

i

t ideal
i

V̇ (τ)dτ

︸ ︷︷ ︸
=0

≤ 0 (33)

for all i ∈ {1, . . . , N} and for all � ∈ {1, . . . , �max
i − 1}.

Now, consider the objective function V = 1
2 xT Lx. Recall we

can decompose it as

V (x(t)) = V (x(0)) +
N∑

i=1

∫ t

0
V̇i(τ)dτ. (34)

Letting �max
i (t) = argmax�∈Z≥0

t�i ≤ t be the index such that

tlast
i (t) = t

�max
i (t)

i , we can further expand V (x(t)) as

V (x(t)) = V (x(0)) +
N∑

i=1

�max
i (t)∑

�=0

∫ min{t� + 1
i ,t}

t�
i

V̇i(τ)dτ (35)

= V (x(0)) +
N∑

i=1

⎡

⎣
�max

i −1∑

�=0

ΔV �
i +

∫ t

t
� max
i

V̇i(τ)dτ

⎤

⎦ . (36)

By the definition of �max
i , we must have that t ≤ t

�max
i +1

i for
all i. Thus, from (32), the last term in (36) must be nonpositive,
and from (33) the second term must be as well.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 10,2020 at 17:11:35 UTC from IEEE Xplore. Restrictions apply.

634 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 2, JUNE 2020

Fig. 3. Plots of (a) the cumulative number of communications, and (b) the full system Lyapunov function for the operation of our algorithm with
σ = 0.5, f (x) = x in solid blue, the algorithm from [27] with σ = 0.5 in dashed red, and a periodic rule with T = 0.01 in dot-dash yellow on the
communication graph shown in Fig. 2. Our algorithm exhibits similar convergence speed as the others, however, with far fewer communication
events required.

It is now clear that V (x(t)) is a nonincreasing function along
the system trajectories and bounded below by 0. Furthermore,
by the introduction of the dwell time, it is clear that each se-
quence of times {t�i}�∈Z≥0 goes to infinity as � → ∞. Thus,
limt→∞ V (x(t)) = C ≥ 0 exists.

Because ΔV �
i ≤ 0 for all � and V (x) is bounded from below,

it is guaranteed that ΔV �
i → 0 as t → ∞. By LaSalle’s Invari-

ance Principle1 [29], the trajectories of the system converge to
the largest invariant set contained in

{x ∈ RN | V̇i(x) = 0 ∀i ∈ {1, . . . , N}}. (37)

From examination of the local objective contribution (7), we
see that V̇i(x) = 0 if and only if either ui(t) = 0 or

∑
j∈Ni

xj −
xi = 0. First, note that

∑
j∈Ni

xj − xi = 0 for all i if and only
if the system is at consensus. This condition is equivalent to
Lx = 0, and as we assume G is connected, ker(L) = {1N }.

Now, assume the system is not at consensus, so there is at least
one agent i with

∑
j∈Ni

xj − xi �= 0. From the control law (3),
it is clear that this implies the next time agent i communicates t�i ,
we will have u�

i (t
�
i) �= 0 as well. Thus, we simply have to prove

that the next time t�i that agent i communicates, it computes a
tideal
i > t�i so the real control ui(t) �= 0 for a nonzero period of

time. As tideal
i ≥ T�

i , the last time at which we can guarantee
V̇i(t) ≤ 0, it suffices to show T�

i > t�i .
T�

i is computed as the earliest time after which our bound on
V̇i(t) is positive. From (43), we can write this bound at time t�i
as V̇i(t�i) = −(

∑
j∈Ni

xj − xi)2 , which is strictly negative. As
the bound is a continuous function of time, this implies that the
smallest t for which we can no longer guarantee V̇i(t) ≤ 0 is
strictly greater than t�i . Thus, the next time agent i communi-
cates, it will apply a nonzero control for a positive duration.

Finally, due to the existence of the maximum disconnected
time tmax, we know that there exists a finite future time at which
agent i will communicate. �

1Due to the discrete communication events, the evolution of V is not contin-
uously differentiable and the aforementioned theorem does not strictly apply.
The more formal proof is obtained under the theory of hybrid systems; however,
the idea and results are the same, and it is not done here for space and clarity.

IV. SIMULATION

In this section, we simulate a system of 50 agents with various
communication graph topologies, and with all σi = σ = 0.5. In
all simulations, we set T dwell = 10−8 s, but the dwell time con-
dition was never used. Similarly, we set tmax = 5 s, but it had no
effect on any of the simulations. Beginning with the same ran-
dom initial state xi for all agents and a minimally connected tree
communication graph, we progressively generated increasingly
connected graphs by randomly adding edges to the graph until
we reached the complete graph KN . We simulated our algo-
rithm on multiple communication topologies generated in this
way, using the second-smallest eigenvalue of the graph Lapla-
cian λ2(L) as a metric for the graph’s connectivity. We addition-
ally compare our algorithm with the algorithm proposed in [27]
(also with σ = 0.5), as well as with a simple periodic triggering
rule where each agent communicates every T = 0.01 s and uses
the constant control law u�

i (t
�
i) on each interval.

We define a heuristic convergence criterion as when the mean
of all distances from the mean state is less than some thresh-
old ε, i.e., 1

N

∑
i ‖xi − x̄‖ < ε; in the simulations here, we

set ε = 0.2 m. Let tconv be the first time at which the above-
mentioned convergence criterion is satisfied, and let NC (tconv)
be the total number of communications by all agents that hap-
pened up to time tconv . The convergence times tconv can be
seen in Fig. 1(a), and the total number of communications re-
quired for convergence is shown in Fig. 1(b). We see that for
all communication graph topologies, our algorithm clearly out-
performs the algorithm presented in [27]. Furthermore, though
with a period of T = 0.01 our algorithm converges in a similar
time as the simple periodic algorithm, it does so with far fewer
communication events required and without requiring global
knowledge of the communication graph (the periodic algorithm
is only guaranteed to converge for T < 2/λmax(L) [9]).

To view the operation of our algorithm on a single system,
we simulate a system of 50 agents on a relatively sparsely con-
nected communication graph (λ2(L) = 0.53, average node de-
gree is 3.9) seen in Fig. 2. We ran our algorithm, the algorithm
presented in [27], and a periodic triggering algorithm on this

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 10,2020 at 17:11:35 UTC from IEEE Xplore. Restrictions apply.

BOWMAN et al.: CONSENSUS OF MULTIAGENT SYSTEMS VIA ASYNCHRONOUS CLOUD COMMUNICATION 635

Fig. 4. Magnitude of control law in use by agent i = 5, |u5 (t)| (solid
blue), as well as its current promise on the cloud server M5 (t) (dashed
red).

system with the same parameters as in the previous paragraphs.
The number of cumulative communications NC (t) is shown in
Fig. 3(a), and the evolution of the Lyapunov function V (x(t))
is seen in Fig. 3(b). As before, our algorithm results in conver-
gence speed comparable to the periodic triggering rule with a
short communication period, however, with far fewer commu-
nications required and no global information needed. Note that
although all given graphs are from just one run of the simulation,
the trends shown hold for other complex random communica-
tion graphs and initial states.

Finally, to demonstrate the effect of promises on the con-
trol inputs, a single agent’s control law (agent 5) from a run
of our algorithm with σ = 0.5 is shown in Fig. 4, along with
its “promise” currently on the cloud server. There exists a lag
between when the promised control max M5(t) increases and
when the actual control increases likewise. While M5(t) repre-
sents the ideal control that the agent would use, it is still bound
to a previous promise until the newer one propagates to all
neighbor agents.

V. CONCLUSION

We have presented a novel self-triggering algorithm that,
given only the ability to communicate asynchronously at dis-
crete intervals through a cloud server, provably drives a set of
agents to consensus without Zeno behavior. Unlike most pre-
vious work, we do not require an agent to be able to listen
continuously, instead only being able to receive information at
its discrete communication times. Through the use of control
promises, we are able to bound the states of neighboring agents,
allowing an agent to remain disconnected until its total contri-
bution to the consensus would become detrimental. The given
algorithm requires no global parameters and is fully distributed,
requiring no computation to be done off of each local platform.
Simulation results show the effectiveness of the proposed algo-
rithm. In the future, we are interested in investigating control
laws different from (27) and forms of f(x) other than f(x) = cx
that may be able to provide more infrequent communication or
faster convergence and in guaranteeing no Zeno behavior with-
out a dwell time.

APPENDIX A
PROOF OF PROPOSITION 1

We begin by further splitting up the local objective contri-
bution V̇i as a sum of individual neighbor pair contributions:
V̇i(t) =

∑
j∈Ni

V̇ij (t), where

V̇ij (t) � −ui(t) (xj (t) − xi(t)) . (38)

For t ≤ tnext
j , we can write V̇ij (t) exactly as

V̇ij (t) = − ui(t)
[
xj (tlast

i) − xi(tlast
i)

+(uj (t) − ui(t))(t − tlast
i)

]
. (39)

For t > tnext
j , since agent i no longer has access to uj (t), we

write it as follows:

V̇ij (t) = − ui(t)
[
xj (tnext

j) +
∫ t

tnext
j

uj (τ)dτ

− (xi(tnext
j) + ui(t)(t − tnext

j))
]
. (40)

We can then use the promise Mj (t) to bound
∣∣∣∣∣

∫ t

tnext
j

uj (τ)dτ

∣∣∣∣∣ ≤ Mj (t)(t − tnext
j) (41)

allowing us to upper bound V̇ij (t) for t > tnext
j with

V̇ij (t) ≤ − ui(t)(xj (tnext
j) − xi(tnext

j))

+ (|ui(t)|Mj (t) + ui(t)2)(t − tnext
j). (42)

Letting αij , βij , and γij be as defined in Proposition 1, we
can write these as

V̇ij (t) ≤
{

αij (tlast
i) + βij (tlast

i)(t − tlast
i) t ≤ tnext

j

αij (tnext
j) + γij (tlast

i)(t − tnext
j) otherwise.

(43)

Assume that the solution to (11) lies in the interval T ∗
i ∈

[tnext
π (k) , t

next
π (k+1)) for some k ∈ {0, . . . , |Ni |}. On this interval, the

states of neighbors π(m) for m > k are known exactly, while
those π(m′) with m′ ≤ k are only known to lie in a ball since
they are scheduled to communicate and change their control by
this time interval. Using (39) and (42), we can write the local
objective contribution V̇i(t) for t in this interval as

V̇i(t) =
k∑

m ′=1

V̇iπ (m ′)(t) +
|Ni |∑

m=k+1

V̇iπ (m)(t) (44)

≤
k∑

m ′=1

(
αiπ (m ′)

(
tnext
π (m ′)

)
+ γiπ (m ′)

(
tlast
i

) (
t − tnext

π (m ′)

))

+
|Ni |∑

m=k+1

(
αiπ (m)

(
tlast
i

)
+ βiπ (m)

(
tlast
i

) (
t − tlast

i

))
.

(45)

Let τ
�,(k)
i be the solution to (11) with the additional con-

straint that t be within the interval [tnext
π (k) , t

next
π (k+1)). The objec-

tive derivative constraint in (11) can be rewritten using (45) in

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 10,2020 at 17:11:35 UTC from IEEE Xplore. Restrictions apply.

636 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 7, NO. 2, JUNE 2020

the form seen in Proposition 1. The solution T�
i to the original

optimization (11) can then be written as

T�
i = min {τ�,(k)

i | k ∈ {0, . . . , |Ni |}}. (46)

APPENDIX B
PROOF OF PROPOSITION 2

First, note that the separation amongst neighbor pairs is still
valid

∫ t

t last
i

V̇i(τ)dτ =
∑

j∈Ni

∫ t

t last
i

V̇ij (τ)dτ. (47)

For an agent j ∈ Ni and t ≤ tnext
j , we can exactly compute the

pair contribution over its disconnected interval as

∫ t

t last
i

V̇ij (τ)dτ = αij (tlast
i)(t − tlast

i)

+
1
2
βij (tlast

i)(t − tlast
i)2 (48)

where αij and βij are as given in (13) and (14).
For agent j and t > tnext

j , we first split the integral into a part
that we can compute exactly and a part that we can only bound
as

∫ t

t last
i

V̇ij (τ)dτ =
∫ tnext

j

t last
i

V̇ij (τ)dτ +
∫ t

tnext
j

V̇ij (τ)dτ (49)

and using the bound (45) can write

∫ t

tnext
j

V̇ij (τ)dτ ≤ αij (tnext
j)(t − tnext

j)

+
1
2
γij (tlast

i)(t − tnext
j)2 . (50)

The total pair contribution
∫

V̇ij (t) is then given by (48) for
t ≤ tnext

j and bounded by

∫ t

t last
i

V̇ij (τ)dτ ≤ αij (tlast
i)(tnext

j − tlast
i)

+
1
2
βij (tlast

i)(tnext
j − tlast

i)2 + αij (tnext
j)(t − tnext

j)

+
1
2
γij (tlast

i)(t − tnext
j)2 (51)

for t > tnext
j .

As before, consider times t that lie in the interval
[tnext

π (k) , t
next
π (k+1)) for some k ∈ {0, . . . , |Ni |}. We can bound

the full objective contribution for times t in this interval as

[from (48), (49), and (51)]

∫ t

t last
i

V̇i(τ)dτ ≤
k∑

m ′=1

[
αiπ (m ′)(tlast

i)(tnext
π (m ′) − tlast

i)

+
1
2
βiπ (m ′)(tlast

i)(tnext
π (m ′) − tlast

i)2

+ αiπ (m ′)(tnext
π (m ′))(t − tnext

π (m ′))

+
1
2
γiπ (m ′)(tlast

i)(t − tnext
π (m ′))

2
]

+
|Ni |∑

m=k+1

[
αiπ (m)(tlast

i)(t − tlast
i)

+
1
2
βiπ (m)(tlast

i)(t − tlast
i)2

]
. (52)

Let τ
tot,(k)
i be the optimal solution to (18) with the addi-

tional constraint that t be within the interval [tnext
π (k) , t

next
π (k+1)).

Using (52), we can rewrite the objective bound in (18) on this
interval, resulting in the optimization seen in (19). The solution
T total

i to (18) can then be written as

T total
i = min {τ tot,(k)

i | k ∈ {0, . . . , |Ni}}. (53)

REFERENCES

[1] C. Nowzari, E. Garcia, and J. Cortés, “Event-triggered communication and
control of networked systems for multi-agent consensus,” Automatica, vol.
105, pp. 1–27, 2019.

[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1,
pp. 215–233, Jan. 2007.

[3] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multia-
gent Networks (Series Applied Mathematics Series). Princeton, NJ, USA:
Princeton Univ. Press, 2010.

[4] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[5] K. J. Åström and B. M. Bernhardsson, “Comparison of Riemann and
Lebesgue sampling for first order stochastic systems,” in Proc. IEEE Conf.
Decis. Control, Las Vegas, NV, USA, Dec. 2002, pp. 2011–2016.

[6] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduction
to event-triggered and self-triggered control,” in Proc. IEEE Conf. Decis.
Control, Maui, HI, USA, 2012, pp. 3270–3285.

[7] M. Mazo Jr. and P. Tabuada, “Decentralized event-triggered control over
wireless sensor/actuator networks,” IEEE Trans. Autom. Control, vol. 56,
no. 10, pp. 2456–2461, Oct. 2011.

[8] X. Wang and M. D. Lemmon, “Event-triggering in distributed networked
control systems,” IEEE Trans. Autom. Control, vol. 56, no. 3, pp. 586–601,
Mar. 2011.

[9] G. Xie, H. Liu, L. Wang, and Y. Jia, “Consensus in networked multi-agent
systems via sampled control: Fixed topology case,” in Proc. Amer. Control
Conf., St. Louis, MO, USA, 2009, pp. 3902–3907.

[10] W. P. M. H. Heemels and M. C. F. Donkers, “Model-based periodic
event-triggered control for linear systems,” Automatica, vol. 49, no. 3,
pp. 698–711, 2013.

[11] X. Meng and T. Chen, “Event based agreement protocols for multi-agent
networks,” Automatica, vol. 49, no. 7, pp. 2125–2132, 2013.

[12] M. Zhong and C. G. Cassandras, “Asynchronous distributed optimization
with event-driven communication,” IEEE Trans. Autom. Control, vol. 55,
no. 12, pp. 2735–2750, Dec. 2010.

[13] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered
control for nonlinear systems,” IEEE Trans. Autom. Control, vol. 55, no. 9,
pp. 2030–2042, Sep. 2010.

[14] X. Wang and M. D. Lemmon, “Self-triggered feedback control systems
with finite-gain L2 stability,” IEEE Trans. Autom. Control, vol. 54, no. 3,
pp. 452–467, Mar. 2009.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 10,2020 at 17:11:35 UTC from IEEE Xplore. Restrictions apply.

BOWMAN et al.: CONSENSUS OF MULTIAGENT SYSTEMS VIA ASYNCHRONOUS CLOUD COMMUNICATION 637

[15] C. Nowzari and J. Cortés, “Self-triggered coordination of robotic networks
for optimal deployment,” Automatica, vol. 48, no. 6, pp. 1077–1087, 2012.

[16] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed event-
triggered control for multi-agent systems,” IEEE Trans. Autom. Control,
vol. 57, no. 5, pp. 1291–1297, May 2012.

[17] G. S. Seybotha, D. V. Dimarogonas, and K. H. Johansson, “Event-based
broadcasting for multi-agent average consensus,” Automatica, vol. 49,
no. 1, pp. 245–252, 2013.

[18] E. Garcia, Y. Cao, H. Yu, P. Antsaklis, and D. Casbeer, “Decentralised
event-triggered cooperative control with limited communication,” Int. J.
Control, vol. 86, no. 9, pp. 1479–1488, 2013.

[19] C. Nowzari and J. Cortés, “Zeno-free, distributed event-triggered commu-
nication and control for multi-agent average consensus,” in Proc. Amer.
Control Conf., Portland, OR, USA, 2014, pp. 2148–2153.

[20] J. Peters, S. J. Wang, A. Surana, and F. Bullo, “Cloud-supported coverage
control for persistent surveillance missions,” J. Dyn. Syst., Meas., Control,
vol. 139, pp. 1–12, Feb. 2017.

[21] P. V. Teixeira, D. V. Dimarogonas, K. H. Johansson, and J. Sousa, “Event-
based motion coordination of multiple underwater vehicles under dis-
turbances,” in Proc. IEEE OCEANS, Sydney, NSW, Australia, 2010,
pp. 1–6.

[22] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson, “Control
of multi-agent systems with event-triggered cloud access,” in Proc. Eur.
Control Conf., Linz, Austria, 2015, pp. 954–961.

[23] C. Nowzari and G. J. Pappas, “Multi-agent coordination with asyn-
chronous cloud access,” in Proc. Amer. Control Conf., Jul. 2016,
pp. 4649–4654.

[24] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson, “Multi-
agent trajectory tracking with self-triggered cloud access,” in Proc. IEEE
55th Conf. Decis. Control, Dec. 2016, pp. 2207–2214.

[25] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson, “Cloud-
supported formation control of second-order multi-agent systems,” IEEE
Trans. Control Netw. Syst., vol. 5, no. 4, pp. 1563–1574, Dec. 2018.

[26] C. Nowzari and J. Cortés, “Team-triggered coordination for real-time con-
trol of networked cyberphysical systems,” IEEE Trans. Autom. Control,
vol. 61, no. 1, pp. 34–47, Jan. 2016.

[27] S. L. Bowman, C. Nowzari, and G. J. Pappas, “Coordination of multi-
agent systems via asynchronous cloud communication,” in Proc. IEEE
55th Conf. Decis. Control, Dec. 2016, pp. 2215–2220.

[28] X. Meng, L. Xie, Y. C. Soh, C. Nowzari, and G. J. Pappas, “Periodic
event-triggered average consensus over directed graphs,” in Proc. IEEE
Conf. Decis. Control, Osaka, Japan, Dec. 2015, pp. 4151–4156.

[29] H. Khalil, Nonlinear Systems (Series Pearson Education). Englewood
Cliffs, NJ, USA: Prentice-Hall, 2002. [Online]. Available: https://books.
google.com/books?id=t_d1QgAACAAJ

Sean L. Bowman (S’12) received the
B.Comp.E. degree in computer engineering
from the University of Minnesota, Minneapolis,
MN, USA. He is currently working toward the
Ph.D. degree in the Computer and Information
Science Department, the University of Pennsyl-
vania, Philadelphia, PA, USA.

His current research interests include
distributed coordination algorithms, vision-aided
inertial navigation, and localization and mapping
over semantic maps.

Mr. Bowman was the recipient of the Best Conference Paper Award
at the 2017 IEEE International Conference on Robotics and Automation.

Cameron Nowzari (M’10) received the Ph.D.
degree in mechanical engineering from the Uni-
versity of California, San Diego, San Diego, CA,
USA, in September 2013.

He then held a Postdoctoral position with
the Electrical and Systems Engineering Depart-
ment, University of Pennsylvania, until 2016. He
is currently an Assistant Professor with the Elec-
trical and Computer Engineering Department,
George Mason University, Fairfax, VA, USA.
His current research interests include dynami-

cal systems and control, distributed coordination algorithms, robotics,
event- and self-triggered control, Markov processes, network science,
spreading processes on networks, and the Internet of Things.

Dr. Nowzari has received several awards including the American Au-
tomatic Control Council’s O. Hugo Schuck Best Paper Award and the
IEEE Control Systems Magazine Outstanding Paper Award.

George J. Pappas (F’09) is the Joseph Moore
Professor and Chair of the Department of Elec-
trical and Systems Engineering, University of
Pennsylvania, Philadelphia, PA, USA. He also
holds a secondary appointment with the Depart-
ments of Computer and Information Sciences,
and Mechanical Engineering and Applied Me-
chanics. He is member of the GRASP Lab and
the PRECISE Center. He previously served as
the Deputy Dean for Research with the School of
Engineering and Applied Science. His research

focuses on control theory and, in particular, hybrid systems, embedded
systems, hierarchical and distributed control systems, with applications
to unmanned aerial vehicles, distributed robotics, green buildings, and
biomolecular networks.

Mr. Pappas was the recipient of various awards such as the Anto-
nio Ruberti Young Researcher Prize, the George S. Axelby Award, the
O. Hugo Schuck Best Paper Award, the National Science Foundation
PECASE, and the George H. Heilmeier Faculty Excellence Award.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on July 10,2020 at 17:11:35 UTC from IEEE Xplore. Restrictions apply.

https://books.google.com/books?id=t_d1QgAACAAJ
https://books.google.com/books?id=t_d1QgAACAAJ

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

