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Abstract— In this work we study a multi-agent coordination
problem in which agents are only able to communicate with
each other intermittently through a cloud server. To reduce the
amount of required communication, we develop a self-triggered
algorithm that allows agents to communicate with the cloud only
when necessary rather than at some fixed period. Unlike the
vast majority of similar works that propose distributed event-
and/or self-triggered control laws, this work doesn’t assume
agents can be “listening” continuously. In other words, when an
event is triggered by one agent, neighboring agents will not be
aware of this until the next time they establish communication
with the cloud themselves. Using a notion of “promises” about
future control inputs, agents are able to keep track of higher
quality estimates about their neighbors allowing them to stay
disconnected from the cloud for longer periods of time while
still guaranteeing a positive contribution to the task. We show
that our self-triggered coordination algorithm guarantees that
the system asymptotically reaches the desired state. Simulations
illustrate our results.

I. INTRODUCTION

This paper considers a multi-agent coordination problem
where agents can only communicate with one another
indirectly through the use of a central base station or “cloud.”
Specifically, we consider the problem of coordinating a
number of submarines that only can communicate with a base
station while at the surface of the water. While a majority
of related works allow for an agent to push information to
its neighbors at any desired time, communicating with the
outside world when underwater is extremely expensive, if
not impossible [1], [2], and so a submarine must perform all
communication while surfaced.

Each time a submarine surfaces, it must determine the next
time to surface and the control law to use while underwater
in order to achieve some desired global task based only on
information available on the server at that moment. In this
paper we are interested in designing a self-triggered coordi-
nation algorithm in which agents autonomously schedule the
next time to communicate with the cloud based on currently
available information. While we motivate our problem via an
underwater coordination problem in which communication
while submerged is impossible, it is also directly applicable to
scenarios where wireless-capable agents cannot be listening
to any communication channels continuously.

Literature review: In the context of the multi-agent coor-
dination problem in general, the literature is extensive [3],
[4], [5]. In our specific problem of multi-agent consensus,
Olfati-Saber and Murray [6] introduce a continuous-time law
that guarantees consensus convergence on undirected as well
as weight-balanced digraphs. However, the majority of these
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works assume agents can continuously, or at least periodically,
obtain information about their neighbors.

A useful tool for determining discrete communication times
in this manner is event-triggered control, where an algorithm
tunes controller executions to the state evolution of a given
system, see e.g., [7], [8]. In particular, event-triggered control
has been successfully applied to multi-agent systems to reduce
overall communication, sensing, and/or actuation effort of the
agents. In [9], the authors formulate a threshold on system
error to determine when control signals need to be updated.
Event-triggered ideas have also been applied to the acquisition
of information rather than control. Several approaches [10],
[11], [12] utilize periodically sampled data to reevaluate the
controller trigger.

Event-triggered approaches generally require the persistent
monitoring of some triggering function as new information is
being obtained. Unfortunately, this is not directly applicable
to our setup because the submarines only get new information
when they surface. Instead, self-triggered control [13], [14],
[15] removes the need to continuously monitor the triggering
function, instead requiring each agent to compute its next
trigger time based solely on the information available at the
previously triggered sample time.

The first to apply these ideas to consensus, Dimarogonas
et al. [16], remove the need for continuous control by
introducing an event-triggered rule to determine when an
agent should update its control signal, however still requiring
continuous information about their neighbors. In [17], the
authors further remove the need for continuous neighbor state
information, creating a time-dependent triggering function to
determine when to broadcast information. The authors in [18]
similarly broadcast based on a state-dependent triggering
function. Recently, these ideas have been extended from
undirected graphs to arbitrary directed ones [12], [19], [20].

A major drawback of all aforementioned works is that they
require all agents to be “listening,” or available to receive
information, at all times. Specifically, when any agent decides
to broadcast information to its neighbors, it is assumed that
all neighboring agents in the communication graph are able
to instantaneously receive that information. Instead, we are
interested in a situation where in between surfacings when
disconnected from the cloud an agent has zero ability to
communicate with other agents.

In [21], the authors study a very similar problem to the
one we consider here but develop an event-triggered solution
in which all Autonomous Underwater Vehicles (AUVs) must
surface together at the same time. This problem has very
recently been looked at in [22], [23] where the authors
utilize event- and self-triggered coordination strategies to
determine when the AUVs should resurface. In [22], a time-
dependent triggering rule β(σ0, σ1, λ0, t) is developed that



ensures practical convergence (in the presence of noise) of
the whole system to the desired configuration. Instead, the
authors in [23] develop a state-dependent triggering rule with
no explicit dependence on time; however, the self-triggered
algorithm developed there is not guaranteed to avoid Zeno
behaviors which makes it an incomplete solution to the
problem. In this work we incorporate ideas of promises from
team-triggered control [24], [25] to develop a state-dependent
triggering rule that guarantees asymptotic convergence to
consensus while ensuring that Zeno behavior is avoided.

Statement of contributions: Our main contribution is the
development of a novel distributed team-triggered algorithm
that combines ideas from self-triggered control with a notion
of “promises.” These promises allow agents to make better
decisions since they have higher quality information about
their neighbors in general. Our algorithm incorporates these
promises into the state-dependent trigger to determine when
they should communicate with the cloud. In contrast to [22],
[23], our algorithm uses a state-dependent triggering rule
with no explicit dependence on time, no global parameters,
and no possibility of Zeno behavior.

In general, distributed event- and self-triggered algorithms
are designed so that agents are never contributing negatively
to the global task, generally defined by the evolution of a
Lyapunov function V . Instead, we actually allow an agent to
be contributing negatively to the global task temporarily as
long as it is accounted for by its net contribution over time.
Our algorithm guarantees the system converges asymptotically
to consensus while ensuring that Zeno executions cannot
occur. Finally, we illustrate our results through simulations.

II. PROBLEM STATEMENT

We consider an N agent system with single-integrator
dynamics ẋi(t) = ui(t) for all i ∈ {1, . . . , N}, where we are
interested in reaching a consensus configuration, i.e. where
‖xi(t)−xj(t)‖ → 0 as t→∞ for all i, j ∈ {1, . . . , N}. For
simplicity, we consider scalar states xi ∈ R, but all results
are extendable to arbitrary dimensions.

Given a connected communication graph G, it is well
known [6] that the distributed continuous control law

ui(t) = −
∑
j∈Ni

(xi(t)− xj(t)) (1)

drives each agent of the system to asymptotically converge
to the average of the agents’ initial conditions. However, in
order to be implemented, this control law requires each agent
to continuously have information about its neighbors and
continuously update its control law.

Several recent works have been aimed at relaxing these
requirements [12], [19], [20], [17]. However, they all require
agents to be “listening” continuously to their neighbors, i.e.
when an event is triggered by one agent, its neighbors are
immediately aware and can take action accordingly.

Unfortunately, as we assume here that agents are unable
to perform any communication while submerged, we cannot
continuously detect neighboring events. Instead, we assume
that agents are only able to update their control signals when
their own events are triggered (i.e., when they are surfaced).

tlast
i Last time agent i surfaced

t
expire
i Control expiration time of agent i
tnext
i Next time agent i will surface

xi(t
last
i ) Last updated position of agent i

ui(t
last
i ) Last trajectory of agent i

Mi(t
last
i ) Most recent control bound promise from agent i

TABLE I
DATA STORED ON THE CLOUD FOR ALL AGENTS i AT ANY TIME t.

Let {t`i}`∈Z≥0
be the sequence of times at which agent i

surfaces. Then, our algorithm is based on a piecewise constant
implementation of the controller (1) given by

u?i (t) = −
∑
j∈Ni

(xi(t
`
i)− xj(t`i)), t ∈ [t`i , t

`+1
i ). (2)

Remark II.1 Later we will allow the control input ui(t) to
change in a limited way while agent i is submerged, but
for now we assume the control is piecewise constant on the
intervals [t`i , t

`+1
i ). Motivation for and details behind changing

the control while submerged are discussed in section III-B.•

The purpose of this paper is to develop a self-triggered
algorithm that determines how the the sequence of times {t`i}
and control inputs ui(t) can be chosen such that the sys-
tem converges to the desired consensus statement. More
specifically, each agent i at each surfacing time t`i must
determine the next surfacing time t`+1

i and control ui(t) only
using information available on the cloud at that instant. The
closed loop system should then have trajectories such that
|xi(t)− xj(t)| → 0 as t→∞ for all i, j ∈ {1, . . . , N}. We
describe the cloud communication model next.

A. Cloud communication model

We assume that there exists a base station or “cloud”
that agents are able to upload data to and download data
from when they surface. At any time t ∈ [t`i , t

`+1
i ), the

cloud stores the following information about agent i: the
last time tlast

i (t) = t`i that agent i surfaced, the next time
tnext
i (t) = t`+1

i that agent i is scheduled to surface, the state
xi(t

last
i ) of agent i when it last surfaced, and the last control

signal ui(tlast
i ) used by agent i. The server also contains a

control expiration time texpire
i ≤ tnext

i and a promise Mi for
each agent i which will be explained in Section III where
we develop the self-triggered coordination algorithm. This
information is summarized in Table I. For simplicity, we
assume that agents can download/upload information to/from
the cloud instantaneously.

While the link is open, agent i downloads all the in-
formation in Table I for each neighbor j ∈ Ni. Agent i
then (instantaneously) computes its control signal ui(t`i) and
next surfacing time t`+1

i such that it knows it will make a
net positive contribution to the consensus over the interval
[t`i , t

`+1
i ). Finally, before closing the communication link and

diving, agent i calculates a promise Mi bounding its future
control inputs and uploads all data to the server. The goal
of this paper is to design a self-triggered algorithm picking



these control inputs and times such that as t→∞,

|xj(t)− xi(t)| → 0 (3)

for all agents i, j ∈ {1, . . . , N}. In the next section we
describe this algorithm in detail.

III. DISTRIBUTED TRIGGER DESIGN

Consider the objective function

V (x(t)) =
1

2
xT (t)Lx(t), (4)

where L is the Laplacian of the connected communication
graph G. Note that V (x) ≥ 0 for all x ∈ RN and V (x) = 0
if and only if xi = xj for all i, j ∈ {1, . . . , N}. Thus, the
function V (x) encodes the objective of the problem and we
are interested in driving V (x)→ 0. For simplicity, we drop
the explicit dependence on time when referring to time t.

Taking the derivative of V with respect to time, we have

V̇ = ẋTLx = −
N∑
i=1

ẋi
∑
j∈Ni

(xj − xi).

Let us split up V̇ =
∑N
i=1 V̇i, where

V̇i , −ẋi
∑
j∈Ni

(xj − xi). (5)

Note that we have essentially distributed V̇ in a way that
clearly shows how each agent’s motion contributes to the
global objective, allowing us to write

V (x(t)) = V (x(0)) +

N∑
i=1

∫ t

0

V̇i(x(τ))dτ.

Ideally, we now wish to design a self triggered algorithm
such that V̇i(x(t)) ≤ 0 for all agents i at all times t. Thus
at surfacing time t`i , agent i must determine t`+1

i and ui(t)
such that V̇i(t) ≤ 0 for all t ∈ [t`i , t

`+1
i ).

While in the full algorithm, we allow an agent to modify
its control by setting it to 0 while still submerged, for clarity
in this subsection we assume the control is constant on the
entire submerged interval and ignore the control “expiration
time” texpire

i ; its motivation and (minor) modifications to the
algorithm will be described in section III-B.

Note that given the information agent i downloaded from
the server at time t`i , it is able to exactly compute the state
of a neighboring agent j ∈ Ni up to the time it resurfaces
tnext
j . For any t`i ≤ t < tnext

j ,

xj(t) = xj(t
last
j ) + uj(t

last
j )(t− tlast

j ). (6)

Let Ti = minj∈Ni
tnext
j be the first time at which any

neighboring agent j is scheduled to surface. Thus, agent i
can calculate the position of its neighbors exactly until time
Ti. For times t with t`i ≤ t < Ti, we can then write the local
objective function contribution as

V̇i = −u(t`i)
∑
j∈Ni

[
(xj(t

`
i)− xi(t`i)) +

(t− t`i)(uj(tlast
j )− ui(t`i))

]
.

(7)

Let t? be the smallest time t? ≥ t`i such that V̇i ≤ 0,
assuming all neighbor agents continue to use a constant
control, is not satisfied (this time is easily computable with
known information from (7)). If t? ≤ Ti, then agent i simply
sets tnext

i = t`+1
i = t?, and by continuity of V̇i it is guaranteed

that V̇i(t) ≤ 0 for all t ∈ [t`i , t
`+1
i ).

If t? > Ti, however, it can no longer be guaranteed that
V̇i(t) ≤ 0 for t > Ti. For any t > Ti, we can write

xj(t) = xj(Ti) +

∫ t

Ti

ẋj(τ)dτ, (8)

and also, for t? ≤ t ≤ t`+1
i ,

xi(t) = xi(Ti) + ui(t
last
i )(t− Ti). (9)

We can then write V̇i(t) as

V̇i(t) = −ui(t`i)

[ ∑
j∈Ni

(xj(Ti)− xi(Ti)) +

∑
j∈Ni

∫ t

Ti

ẋj(τ)dτ − ui(t`i)(t− Ti)

]
.

(10)

Let us first consider the case where ui(t`i) < 0. We see that
V̇i ≤ 0 iff the bracketed quantity in (10) is ≤ 0. While agent
i is submerged, however, agent j is autonomously updating
its control signal; thus, agent i does not have access to ẋj(t),
making it hard to determine how to move without surfacing.
To remedy this, we borrow an idea of promises from team-
triggered control [25]. Suppose that although we don’t know
ẋj(t) exactly for t > Ti, we know some bound Mj(t) ≥ 0
such that |ẋj(t)| ≤Mj(t) . Then,∫ t

Ti

ẋj(τ)dτ ≤
∫ t

Ti

Mj(t)dτ = Mj(t)(t− Ti). (11)

Using this bound, we get the following sufficient condition
for V̇i ≤ 0:

(t− Ti)
∑
j∈Ni

(
ui(t

`
i)−Mj(t)

)
≥
∑
j∈Ni

(xj(Ti)− xi(Ti)) .

(12)

If ui(t`i) > 0, we similarly get

(t− Ti)
∑
j∈Ni

(
ui(t

`
i) +Mj(t)

)
≤
∑
j∈Ni

(xj(Ti)− xi(Ti)) .

(13)

Letting T ?i be the smallest T ?i ≥ Ti such that (12) (or (13))
is no longer satisfied, i.e. the smallest time such that we can
no longer guarantee that V̇i ≤ 0, we know that V̇i ≤ 0 on all
of [t`i , T

?
i ] by continuity of V̇i.

It is additionally possible to allow agent i to remain
submerged for longer by allowing V̇i to temporarily become
positive as long as we select t`+1

i such that the total
contribution to the objective function on the interval [t`i , t

`+1
i ),

∆V `i ,
∫ t`+1

i

t`i

V̇i(τ)dτ, (14)

is nonpositive.
Let Bi be the contribution from agent i to the objective



function between t`i and Ti, i.e.

Bi =

∫ Ti

t`i

V̇i(τ)dτ. (15)

Note here we are specifically interested in the case when
t? > Ti, and so Bi is guaranteed to be negative. Similarly,
let Ci(t) be the contribution from Ti to t, i.e.

Ci(t) =

∫ t

Ti

V̇i(τ)dτ. (16)

Using the bounds Mj(t), it is possible to bound Ci(t):

Ci(t) ≤ Ci(t) =
βi
2

(t− Ti)2 + γi(t− Ti) (17)

where

βi =
∑
j∈Ni

|ui(tlast
i )|Mj(t) + ui(t

last
i )2 (18)

and

γi = ui(t
last
i )

∑
j∈Ni

(xj(Ti)− xi(Ti)) . (19)

Let T total
i be the smallest time T total

i ≥ Ti such that

Bi + Ci(T
total
i ) < 0 (20)

is no longer satisfied, i.e., the first time at which agent i can
no longer guarantee it is still making a positive contribution
to the global objective since the last time it surfaced. Setting
t`+1
i = T total

i thus ensures that the total contribution from
agent i to the global objective function, ∆V `i = Bi+Ci(t

`+1
i ),

is nonpositive.
Selecting t`+1 = T ?i ensures that V̇i < 0 over the

submerged interval, ensuring that agent i is making progress
towards the global objective at all t. Selecting t`+1 = T total

i

is a trade-off; while this time allows the agent to remain
submerged for longer, as it allows some positive contribution
to the objective function, overall progress is slower. Thus,
we propose a tuning parameter σi ∈ [0, 1], selecting a time
t`+1
i such that T ?i ≤ t`+1 ≤ T total

i :

t`+1
i = (1− σi)T ?i + σiT

total
i . (21)

By continuity of V̇i and the definitions of T ?i , T
total
i , it is

guaranteed that T ?i ≤ t
`+1
i ≤ T total

i and that we still have Bi+
Ci(t

`+1
i ) ≤ 0. Setting all σi near 0 allows faster convergence

with more frequent surfacing, while σi near 1 results in slower
convergence but less frequent surfacing.

A. Selecting promises Mj

As it isn’t possible in general for agent i to bound a
neighbor agent j’s future control inputs from past state and
control information, instead each agent makes a promise Mi

about its future control inputs each time it connects to the
server. Let M `

i be the promise made by agent i at time t`i .
From equations (12), (13), (20), it is clear that the smaller
Mj is for any j ∈ Ni, the longer agent i is able to stay
submerged. However, limiting the control too much below
the ideal control (2) will slow convergence.

As a balance, at time t`i agent i sets its promise to be exactly
the magnitude of its ideal control input: M `

i =
∣∣u?i (t`i)∣∣. Note

however that this does not mean agent i can use its ideal
control law at all times and still abide by previous promises
it has made; if the new desired input and promise is greater
in magnitude than its previous promise, to remain truthful to
previous promises agent i must wait until the new promise
has been received by all of its neighbors when they surface
before it can use its desired control input.

Let τ `ij be the time that agent j sees agent i’s `th promise,
i.e. τ `ij = tnext

j (t`i). When submerging for an interval [t`i , t
`+1
i ),

agent i needs to guarantee that all promises Mi currently
believed by j ∈ Ni are abided by.

Let plast
ij (t) be the index of the most recent promise by

agent i that agent j is aware of at time t, i.e.

plast
ij (t) = arg max

` : τ`
ij≤t

τ `ij , (22)

and let P`i be the set of promise indices that agent i must
abide by when submerging on [t`i , t

`+1
i ), i.e.

P`i =
{
plast
ij (t) | j ∈ Ni, t ∈ [t`i , t

`+1
i )

}
. (23)

To abide by all promises that agent i’s neighbors believe
about its controls, then, it simply needs to bound its control
input magnitude by

umax
i (t`i) = min

k∈P`
i

Mk
i . (24)

With this maximum, the actual control law used and
uploaded by agent i on the interval [t`i , t

`+1
i ) is given by

bounding the ideal control magnitude by umax
i (t`i), or

ui(t
`
i) =

 u?i (t
`
i)

∣∣u?i (t`i)∣∣ ≤ umax
i (t`i),

umax
i (t`i)

u?
i (t

`
i)

|u?
i (t

`
i)|

otherwise.
(25)

B. Avoiding Zeno behavior

While the presented method of selecting surfacing times
guarantees convergence, it is susceptible to Zeno behavior, i.e.
requiring some agent i to surface an infinite number of times
in a finite time period. To avoid this behavior, we introduce a
fixed dwell time T dwell

i > 0, and force each agent to remain
submerged for at least a duration of T dwell

i . Unfortunately,
this means that in general, there may be times at which an
agent i is forced to remain submerged even when it does not
know how to move to contribute positively to the global task
(or it may not even be possible if it is at a local minimum).
Remarkably, from the way have have distributed V̇ using (5),
if agent i sets ui(t) = 0 its instantaneous contribution to the
global objective is exactly 0.

Thus, we allow an agent’s control to change while it is
submerged and modify the control law described in the
previous section as follows. If the chosen ideal surfacing
time tideal

i = (1 − σi)T ?i + σiT
total
i is greater than or equal

to t`i + T dwell
i , then nothing changes; agent i sets its next

surfacing time t`+1
i = tideal

i and uses the control law (25) on
the entire submerged interval.

If, on the other hand, tideal
i < t`i + T dwell

i , we let agent i
use the usual control law until tideal

i , until which it knows it
can make a positive contribution. After tideal

i , we force agent
i to remain still until it has been submerged for a dwell time



Algorithm 1 : self-triggered coordination

At surfacing time t`i , agent i ∈ {1, . . . , N} per-
forms:
1: download tlast

j , t
expire
j , tnext

j , xj(t
last
j ), ui(t

last
j ),Mj ∀j ∈ Ni from cloud

2: compute neighbor positions xj(t`i) using (27)
3: compute ideal control u?i (t

`
i) = −

∑
j∈Ni

(xi(t
`
i)− xj(t`i))

4: compute umax
i (t`i) using (24) and saved τij data

5: compute control ui(t`i) with (25)
6: compute Ti = minj∈Ni

tnext
j

7: compute t? using (7) as first time when V̇i ≤ 0 is no longer satisfied
8: if t? < Ti then
9: set tideal

i = t?

10: else
11: if ui(t`i) = 0 then
12: set tnext

i = Ti + T dwell

13: else
14: if ui(t`i) < 0 then
15: compute T ?

i as first time when (12) is no longer satisfied
16: else
17: compute T ?

i as first time when (13) is no longer satisfied
18: end if
19: compute Bi using (15)
20: compute T total

i as first time when (20) is no longer satisfied
21: set tideal

i = (1− σi)T ?
i + σiT

total
i

22: end if
23: end if
24: if tideal

i < t`i + T dwell
i then

25: set texpire
i = tideal

i

26: set t`+1
i = t`i + T dwell

i
27: else
28: set texpire

i = t`+1
i = tideal

i
29: end if
30: upload promise Mi =

∣∣u?i (t`i)∣∣ to cloud
31: upload tlast

i = t`i , tnext
i = t`+1

i , texpire
i , ui(t`i), xi(t

`
i) to cloud

32: dive and set ui(t) = ui(t
`
i) for t ∈ [t`i , t

expire
i ), ui(t) = 0 for t ∈

[t
expire
i , t`+1

i )

duration. In other words, we set tnext = t`i + T dwell
i , texpire =

tideal
i and use control law (25) on the interval [t`i , t

expire
i ).

For t ∈ [texpire
i , t`+1

i ), we then set ui(t) = 0, and note that
because V̇i(t) = 0 on this interval we still have the desired
contribution to the global objective∫ t`+1

i

t`i

V̇i(τ)dτ =

∫ texpire
i

t`i

V̇i(τ)dτ < 0. (26)

Agent i is then still able to calculate the position of
any neighbor j exactly for any t < tnext

j using information
available on the cloud by

xj(t) =

{
xj(t

last
j ) + uj(t

last
j )(t− tlast

j ) t < texpire
j ,

xj(t
last
j ) + uj(t

last
j )(texpire

j − tlast
j ) otherwise.

(27)

An overview of the fully synthesized self-triggered coor-
dination algorithm is presented in Algorithm 1. Next, we
present the main convergence result of this algorithm. The
proof is omitted for space considerations.

Theorem III.1 Given the dynamics ẋi(t) = ui(t) and G
connected, if the sequence of update times {t`i} and control
laws ui(t

`
i) are determined by Algorithm 1 for all i ∈

{1, . . . , N}, then

|xi(t)− xj(t)| → 0 (28)

for all i, j ∈ {1, . . . , N} as t→∞.

Fig. 1. Simulated communication network

IV. SIMULATION

In this section we simulate a system of 5 agents with initial
condition x = [9 −2 0.5 8.5 4]T for a total time of 6 seconds,
and with all σi = σ for three different values of σ: 0.01,
0.5, and 0.99. The topology of the communication network
is shown in figure 1. For comparison, we ran the simulation
from the same configuration with a simple periodic triggering
rule where each agent surfaces every T seconds and uses
the constant control law u?i (t

`
i) on each submerged interval.

We show results here for T = 0.2, 0.35, and 0.4 seconds.
Note that for the undirected graph in figure 1 the system will
converge as long as T < T ∗ = 2/λmax(L) = 0.4331.

The cumulative number of surfacings by all agents up to
time t, denoted NS(t), is shown in figure 2 for our algorithm
and the periodic trigger. As expected, as a higher value of
σ allows an agent to stay submerged for longer, NS(t) is
decreasing in σ.

The evolution of the objective function V (x(t)) for the
same six configurations described above is displayed in
figure 3. Again, as expected, the lower the value of σ, the
more quickly the objective V (x(t)) decreases, and values of
σ farther from 0 actually allow the objective to momentarily
increase. It is interesting to note that when comparing
against our self-triggering algorithm against the periodic
algorithm with a period that results in a similar number
of surfacings (e.g. σ = 0.5 and T = 0.35 or σ = 0.01
and T = 2), our algorithm results in the objective V (x(t))
decreasing more rapidly. This shows that we are able to yield
better performance with a similar amount of communication.
Additionally, determining the minimum period T ∗ = 0.4331
requires global information making it even more undesirable.
These benefits are in addition to the other clear advantage of
our algorithm being naturally asynchronous and not requiring
agents to be continuously listening.

A single agent’s control law (agent 5) from a run of our
algorithm with σ = 0.5 is shown in figure 4, along with its
“promise” currently on the cloud server. As can be seen, there
exists a lag between when the promised control max M5(t)
increases and when the actual control increases likewise.
While M5(t) represents the ideal control that the agent would
use, it is still bound to a previous promise until the newer
one propagates to all neighbor agents.

V. CONCLUSION

We have presented a novel self-triggering algorithm that,
given only the ability to communicate asynchronously at
discrete intervals through a cloud server, provably drives a
set of agents to consensus without Zeno behavior. Unlike most
previous work, we do not require an agent to be able to listen
continuously, instead only being able to receive information
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Fig. 4. Magnitude of control law in use by agent
i = 5, |u5(t)|, as well as its current promise on
the cloud server M5(t).

at its discrete surfacing times. Through the use of control
promises, we are able to bound the states of neighboring
agents, allowing an agent to remain submerged until its total
contribution to the consensus would become detrimental. The
given algorithm requires no global parameters, and is fully
distributed, requiring no computation to be done off of each
local platform. Simulation results show the effectiveness of
the proposed algorithm.

In the future, we are interested in investigating control
laws different from (25) that may be able to provide more
infrequent surfacings or faster convergence. We are addition-
ally interested in methods to reach approximate consensus
rather than true asymptotic consensus, and guaranteeing no
Zeno behavior without the introduction of a dwell time.
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